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Abstract. Dynamical topological solitons are studied in classical two-dimensional Heisenberg easy-axis
ferromagnets. The properties of such solitons are treated both analytically in the continuum limit and
numerically by spin dynamics simulations of the discrete system. Excitation of internal mode causes orbital
motion. This is confirmed by simulations.

PACS. 75.10.Hk Classical spin models – 75.30.Ds Spin waves – 05.45.-a Nonlinear dynamics and chaos –
75.40.Mg Numerical simulation studies

1 Introduction

The analysis of two-dimensional (2D) magnetic solitons
continues for more than 25 years, for reviews see refer-
ences [1–3]. Such solitons are well-known to play an im-
portant role in the physics of 2D magnetic systems. In
easy-plane magnets with continuously degenerated ground
state there appear magnetic vortices, which are respon-
sible for the Berezinskĭı-Kosterlitz-Thouless phase tran-
sition [4,5]. Belavin and Polyakov were the first who
constructed exact analytical solutions for 2D topological
solitons in the isotropic magnet in the continuum limit,
and proved that such solitons are responsible for the de-
struction of the long-range ordering for finite tempera-
ture [6]. In the anisotropic magnets such static solitons
are unstable against collapse [7,8]. However in easy-axis
magnets there appear various types of dynamical local-
ized topological solitons due to the presence of additional
integrals of motion. We will consider precessional soli-
tons [1], which exist in uniaxial magnets due to the con-
servation of the z-projection Sz of the total spin [1,9].
Precessional solitons are known for a number of models
used in field theory and condensed matter physics, see ref-
erence [10]. The topological small radius solitons become
interesting now due to possible applications in high-energy
physics [11] and the quantum Hall effect [12].

The problem of the dynamics of topological solitons
and vortices is a complicated task for 2D ferromagnets,
where Lorentz and Galilean invariance are absent. The
presence of a gyroforce acting on a moving soliton is the
only thing which is well established, but the free gyro-
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scopic dynamics has not been reported till now for any
2D solitons. For the easy-plane magnets the weak localiza-
tion of the vortex is related to the gapless magnon spec-
trum; hence the vortex dynamics is governed mostly by
the interaction with the system border, and the inertial
properties do not appear. As a result, computer simula-
tions of magnetic vortex dynamics in a large but finite
lattice show a motion which can be described by com-
plicated non-Newtonian dynamical equations with nonlo-
cal terms [13]. For the isotropic magnet with the gapless
magnon dispersion law numerical analysis shows the ab-
sence of the localized motion of the soliton [14].

A very attractive candidate to discuss the general
problems of the magnetic soliton motion is the easy-axis
ferromagnet. In this case the soliton shape is exponen-
tially localized, it seems to be possible to separate the
soliton motion from the magnons due to their finite acti-
vation energy. The general features of the 2D soliton dy-
namics, which should have particle-like properties with a
finite soliton mass, are not clear at present. For example,
in works of Papanicolaou et al. [14–16] the dynamics of
2D solitons was described using the algebra for some non-
canonic momentum. In particular, as it was mentioned in
reference [15], a single topological soliton can not move
without external field. At the same time a free rotational
motion of the 2D topological soliton was predicted in ref-
erence [17]. It results in a finite mass for the small-radius
soliton [17], while the mass of the localized soliton diverges
as the logarithm of the system size according to [18].

The present work is devoted to the analysis of the
dynamical properties of topological solitons in easy-axis
ferromagnets, both in the discrete model with weak
anisotropy and in the continuum model. We should stress
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here that topological solitons were studied only in the
frameworks of continuum field approaches in all above
mentioned papers. Spin dynamics simulations for the mo-
tionless 2D topological solitons were performed in [19].
In this paper we perform spin dynamics simulations for
a wide range of soliton shapes: from large radius soli-
tons to small ones. The main issue is to move the soli-
ton. Using the structure of internal modes [20], we have
found such perturbations of initial centrosymmetric soli-
ton shape, which results in perfect orbital motion of the
soliton.

2 Discrete model and continuum limit
for 2D ferromagnets

We consider the simplest model of the classical 2D ferro-
magnet described by the following Hamiltonian

H = −J

2

∑

(n,α)

(
Sn ·Sn+α + δSz

nSz
n+α

)
. (1)

Here Sn ≡ (Sx
n, Sy

n, Sz
n) is a classical spin vector with

fixed length S (in units of the Plank constant �) on the
site n of a two-dimensional square lattice, α is a vector
to a nearest neighbor. The model includes the isotropic
Heisenberg exchange interaction, J > 0 is the exchange
integral, and the spatially homogeneous uniaxial exchange
anisotropy, δ is the anisotropy constant. The summation
runs over nearest-neighbor pairs (n, n + α). The case
δ = 0 corresponds to the isotropic model. To describe the
anisotropy effects we will consider the case when δ > 0,
then the z-axis suppose the easiest magnetization.

The spin dynamics is described by the discrete version
of the Landau-Lifshitz equations

dSn

dt
= −1

�

[
Sn × ∂H

∂Sn

]
. (2)

The model of the pure uniaxial ferromagnet has well-
known linear excitations (magnons) above the ground
state Sz

n = 1 of the form 1−Sz
n = const � 1, Sx

n +iSy
n ∝

exp(ikxa+ikya−iωt), which have the finite gap dispersion
law

ω(k) = ω0 +
4JS

�

[
sin2

(
kxa

2

)
+ sin2

(
kya

2

)]
. (3)

Here ω0 = 4JSδ/� is the homogeneous ferromagnetic res-
onance frequency, k is the wave vector.

In the case of weak anisotropy, δ � 1, the character-
istic size l0 = a/

√
4δ of the excitations is larger than the

lattice constant a, so that in the lowest approximation in
the small parameter a/l0 and with weak gradients of mag-
netization one can use the continuum approximation for
the Hamiltonian (1) by introducing the normalized spin
s = S/S = (sin θ cosφ; sin θ sin φ; cos θ) . The continuum
version of the Hamiltonian is

E[θ, φ] =
JS2

2

∫
d2x

[
(∇θ)2 + sin2 θ (∇φ)2 +

sin2 θ

l20

]
. (4)

In terms of the fields θ and φ, the Landau-Lifshitz equa-
tions (2) read

sin θ ∂tφ = − a2

�S

δE

δθ
, sin θ ∂tθ =

a2

�S

δE

δφ
. (5)

In the long wavelength limit the magnon excitations of the
form θ = const � 1, φ = k · r − ωt, have the following
dispersion law,

ω(k) = ω0(1 + k2l20), (6)

which follows from (3) in the lowest approximation in
ka � 1.

3 The structure of precessional soliton

For the pure uniaxial ferromagnet the Hamiltonian (1)
does not depend explicitly on the variable φ due to the
spin-space isotropy (in contrast to the lattice, which is al-
ways anisotropic but in coordinate space). This condition
corresponds to the additional integral of motion

N =
∑

n

(S − Sz
n) . (7)

When N � 1 and the WKB approach is valid, one can
consider N ∈ N as the number of magnons, bound in
the soliton, see reference [1]. The conservation law (7) can
provide a conditional minimum of the Hamiltonian, which
stabilize the possible soliton solution, see below. The con-
tinuous version of (7) reads

N =
S

a2

∫
d2x (1 − cos θ) . (8)

The simplest nonlinear excitation of the model (5) is a
2D soliton, which has a finite energy. The topological
properties of the soliton are determined by the mapping
of the xy-plane to the S2-sphere of the order parameter
space. This mapping is described by the homotopic group
π2(S2) = Z, which is characterized by the topological in-
variant (Pontryagin index)

q =
1
4π

∫
d2xQ, Q =

εαβ

2

[
s · (∇αs ×∇βs

)]
. (9)

The Pontryagin index takes integer values, q ∈ Z, being
an integral of motion.

Let us consider the so-called centrosymmetric topologi-
cal precessional soliton, which has the following structure:

θ = θ0 (ρ) , φ = ϕ0 + qχ − ωpt, (10)

where ρ = r/l0 is the dimensionless radius and ωp ∈
(0, ω0) is the frequency of the internal precession. We will
discuss only the case q = 1, when the soliton has a lower
energy. The form of the function θ0(•) satisfies the follow-
ing differential problem:

d2θ0

dρ2
+

1
ρ

dθ0

dρ
− sin θ0 cos θ

(
1 +

1
ρ2

)
+

ωp

ω0
sin θ0 = 0,

(11a)
θ0(0) = π, θ0(∞) = 0. (11b)
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This equation was solved numerically in references [21–23].
For the case of a centrosymmetric soliton the number of
bound magnons

N = N0

∫ ∞

0

ρ dρ [1 − cos θ0(ρ)] , (12)

where N0 = 2πSl20/a2 is the characteristic number of
bound magnons for 2D magnets [21]. Multiplying equa-
tion (11a) by ρ2dθ0/dρ and integrating over all ρ, one can
easily obtain the identity
∫ ∞

0

sin2 θ0(ρ)ρdρ =
2ωp

ω0

∫ ∞

0

[1 − cos θ0(ρ)] ρdρ, (13)

which gives a possibility to rewrite the soliton energy (4)
as follows

E = Eexc + �ωpN,

Eexc =
JS2

2

∫
d2x

[
(∇θ)2 + sin2 θ (∇φ)2

]
. (14)

Note that the linear dependence of the soliton energy E
on N agrees with the general relation �ωp = δE/δN .

The shape of the soliton essentially depends on the
number N of bound magnons. In the case of solitons with
large radius R (equivalent to N � N0), the approximate
“domain wall” solution works well, see reference [1]. This
solution has the shape of a curved 1D domain wall at the
distance R

cos θ0(r) = tanh
r − R

l0
. (15)

Using this simple structure one can obtain the number of
bound magnons, which is proportional to the area of the
soliton, N ≈ N0(R/l0)2, and precession frequency

ωp

ω0
≈ l0

R
≈
√

N0

N
. (16)

In the case of small radius solitons (N � N0), the follow-
ing asymptotically exact solution works well [23]

tan
θ0(r)

2
=

R

r0
K1

(
r

r0

)
, r0 =

l0√
1 − ωp/ω0

, (17)

where K1(•) is the McDonald function. It provides cor-
rect behavior for r < R � l0, where it converts to the
Belavin-Polyakov solution tan θ0/2 = R/r and provides
a correct exponential decay for r � R. In this case the
frequency of the soliton precession ωp → ω0 when N → 0,
but the dependence ωp(N) has a singularity at the origin:
dωp/dN → ∞ as N → 0

ωp

ω0
≈ 1 − 1

ln (8N0/eγ2N)
, (18)

where γ ≈ 1.78 is the Euler constant, see refer-
ences [23,24].

In the intermediate case of arbitrary R, it is possible
to use an approximate trial function of the form, proposed
in reference [20],

tan
θ0(r)

2
=

R

r
exp

(
−r − R

r0

)
. (19)

Here R is the fitting parameter, which was found in refer-
ence [20] by fitting the trial function (19) to the numerical
solution of the differential problem (11). The value of this
fitting parameter is closed to the soliton radius, which sat-
isfies the condition cos θ0(R) = 0.

The trial function (19) gives a possibility to describe
approximately the soliton shape for a given radius R. How-
ever, it contains one extra parameter, ωp, due to the de-
pendence r0 = r0(ωp). One can calculate approximately
the ωp(R)-dependence as follows

ωp(R) ≈ ω0l0
R + l0

, (20)

which provides the correct asymptote (16) for R � l0 and
gives the limiting value ωp = 0 for R � l0. In the same
approach the typical size of the exponential tail of the
soliton r0 ≈ l0

√
(R + l0)/R; thus for the soliton shape we

have finally

tan
θ0(r)

2
≈ R

r
exp

(
−r − R

l0

√
R

R + l0

)
,

φ = ϕ0 + χ − ωpt. (21)

We will use this simple expression as initial condition for
our numerical simulations in Section 5.

4 The soliton dynamics

To describe the dynamics of the soliton as a whole, it
is necessary first of all to introduce an effective soliton
coordinate. Let us define the soliton position X(t) =
X(t) + iY (t) as the center of mass of the z-component
of the magnetization field:

X(t) =
S

Na2

∫
d2x r (1 − cos θ) . (22)

Using this quantity we will look for the way of possible
soliton deformation, which initialize its motion. In order
to realize this idea, let us derive the soliton speed (see
Appendix A):

dX

dt
=

JS2

�N

∫
d2x sin2 θ∇φ. (23)

It is convenient to classify all possible perturbations of the
soliton shape using a complete set of functions. We choose
the solution of the linearized problem, which provides a set
of partial waves.

Let us remind that the soliton in an easy-axial ferro-
magnet has a number of local magnon modes. The ex-
istence of local modes is possible because of the gap in



396 The European Physical Journal B

the magnon spectrum as predicted in reference [20]; such
modes correspond to different types of soliton shape os-
cillations. To describe the local modes one has to lin-
earize the Landau-Lifshitz equations (5) on the soliton
background as it was done in reference [20]. We use the
partial-wave expansion

θ = θ0(ρ) +
∑

m

Am (um + vm) cosΦm,

φ = ϕ0 + χ − ωpt +
∑

m

Am

sin θ0
(um − vm) sin Φm, (24)

where Φm = mχ−ωmt and ωm is the magnon frequency in
the rotating frame. The radial functions um(ρ) and vm(ρ)
satisfy the following eigenvalue problem for two coupled
Schrödinger-like equations:
[
− d2

dρ2
− 1

ρ

d

dρ
+ V+(ρ) − ωm

ω0

]
um = W (ρ)vm,

[
− d2

dρ2
− 1

ρ

d

dρ
+ V−(ρ) +

ωm

ω0

]
vm = W (ρ)um, (25)

where the radial “potentials” are

V±(ρ) =
(cos θ0 ± m)2

ρ2
+ cos θ0

(
cos θ0 − ωp

ω0

)

− 1
2

sin2 θ0

(
1 +

1
ρ2

)
− 1

2
(θ′0)

2,

W (ρ) =
1
2

sin2 θ0

(
1 +

1
ρ2

)
− 1

2
(θ′0)

2.

The local modes exist in a range of frequencies inside the
gap, ωloc

m ∈ (0, ω0−ωp). The number of local modes essen-
tially depends on the soliton radius: when the soliton ra-
dius decreases, the local modes leave the gap range, trans-
forming to the quasi-local modes with singularities in the
scattering picture. For the soliton with R ≤ Rc = 1.52l0
there exists only one local mode, namely the mode with
m = −1, and it is this mode which corresponds to the
soliton motion.

Let us calculate the effective soliton trajectory X(t)
using the partial wave ansatz (24). In the linear approx-
imation in Am all modes with |m| �= 1 give no contri-
bution to the integral (23) due to the angular symmetry,
and the effective soliton coordinate results as follows (see
Appendix A for the details)

X(t) = Rorbe−iω−1t, Rorb =
|A−1| |C−1|N0ω0l0

2Nω−1
,

C−1 = 4
∫ ∞

0

ρdρ cos θ0

(
u−1v1 − v−1u1

)
. (26)

Thus, only the perturbation with the symmetry of the
mode m = −1 can lead to a soliton motion as a whole.
As we have found, the best way to excite such a mode is

to use the exact shape of this mode, calculated in linear
approximation, with finite amplitude of deformation A−1.
We will check this prediction in Section 6.

At the end of the section let us discuss the connection
between the dynamics of the soliton center X(t), which
results in the orbital motion (26), and the dynamics of
the specific soliton position, introduced by Papanicolaou
and Tomaras [15] as a some integral of the topological
density Q (9):

R =
∫

d2xrQ∫
d2xQ . (27)

This quantity can be interpreted as a “guiding center” of
the soliton orbit. In the linear on Am approximation one
can calculate (see Appendix A) that

R(t) = −A1l0ex = const., (28)

which corresponds to the simple soliton shift due to the
translational mode with m = +1. The physical picture
is similar to the electron motion in the magnetic field:
the electron moves along the circular Larmor orbit and
dX/dt is not conserved; the generalized momentum P
also changes; however their combination, which determine
the center of the “guiding center” of the orbit R saves its
position.

5 Numerical simulations for the circular
symmetric topological precessional soliton

To validate predictions of the continuum theory for the
soliton properties, we integrate numerically the discrete
Landau-Lifshitz equations (2) over square lattices of size
L × L using a 4th-order Runge-Kutta scheme with time
step 0.01 and periodic boundary conditions. In all cases
the soliton is started near the center of the domain. We
have fixed the exchange constant J = � = 1 as well as the
spin length S = 1. We have considered the anisotropy
parameter in the range δ ∈ (0.0005; 0.1), correspond-
ing to l0/a ∈ (22.4, 1.58) so that we are close to the
continuum limit. We consider system sizes in the range
L/a ∈ (50, 800).

We start the simulations using an initial soliton-like
distribution

θ = θ0(r), φ = ϕ0 + χ, (29)

with the trial function (21) for the θ-field. Evidently, the
soliton solutions of the Landau-Lifshitz equations for a
lattice differ from the circular symmetric continuous solu-
tions, and also from the simple trial function. To find such
a “pure” soliton solution, i.e. to adapt the trial solution to
the lattice, one should provide enough time for the decay
of the initial error in the trial functions. In fact, using (29)
as initial conditions for the lattice we excite also magnons,
which should be taken out the system. To avoid the prob-
lem of magnons we have damped them the initial stage of
simulations by applying damping. This kills all spreading
spin waves coming from the imperfect initial condition. In



D.D. Sheka et al.: Dynamics of topological solitons in two-dimensional ferromagnets 397

this way instead of equations (2), we have integrated nu-
merically Landau-Lifshitz equations with Gilbert damping

�(1+ε2)
dSn

dt
= −

[
Sn × ∂H

∂Sn

]
+

ε

S

[
Sn×

[
Sn × ∂H

∂Sn

]]
,

see reference [25] for details. The lowest frequency of the
continuous magnon spectrum is ω0, thus the damping
time td ≈ 1/(εω0), see reference [19] for details. During
the damping time (t < td), the magnons are damped
in the system, but the soliton is also damped, and the
soliton energy E decays as well as the number of bound
magnons N . In order to save the soliton structure, we
should switch off the damping before we damp out the
soliton, i.e. t < 1/εωp. In all simulations we use the same
value of ε = 0.02, then the damping time td ≈ 12/δ, and
the damping is turned off adiabatically after a time greater
than td.

Let us discuss the choice of the other parameters. In
all simulations we want to be not far from the contin-
uum limit in order to validate the continuum approach.
It means that the magnetic length l0 should be greater
than the lattice constant a. This regulates the choice of
the anisotropy constant δ = a2/4l20. Besides l0 the soliton
shape is characterized by two extra scales: R, which is the
soliton radius, and r0, which characterizes the scale of the
exponential decay of the excitation far from the soliton
center.

We start with the large radius solitons. In this case
R � r0 ≈ l0, and we can limit ourselves by choosing
δ = 0.1 (this corresponds to l0 ≈ 1.6a). The system size L
should be much greater than the largest parameter of the
soliton, which is its radius. We consider solitons up to the
radius R = 20l0 ≈ 31.6a. Thus we consider lattices with
L = 200a , which satisfy all above mentioned conditions.

In the case of small radius solitons we have the follow-
ing relation between the parameters of the system:

a � R � l0 � r0 � L. (30)

For the smallest soliton we choose δ = 0.0005, which corre-
sponds to l0 ≈ 22.4a; this gives the possibility to consider
solitons of small radii down to R = 0.225l0 ≈ 5a. However,
such a small anisotropy drastically changes the soliton
shape far from the center, which has the scale r0, see equa-
tion (17). For example, for the soliton with R = 0.225l0,
the precession frequency ωp ≈ 0.84ω0 (see Ref. [20]), which
results in r0 = l0/

√
1 − ωp/ω0 ≈ 56a. Thus to consider

small radius solitons we must increase the system size.
In our spin dynamics simulations we choose L = 800a
for the smallest solitons. To perform simulations for such
large systems, 800 × 800, we have used parallelize a com-
putations, see Appendix B.

Let us discuss results of our spin dynamics simula-
tions. Starting from initial conditions (29), and adapting
the soliton shape to the lattice, we have obtained the class
of one-parameter stable soliton solutions for a wide range
of the parameter N , or equivalently, the soliton radius R.
We have studied the R(N) dependence, which is presented
in Figure 1. Almost in the full range of parameters, the

Fig. 1. Soliton radius as a function of the number of bound
magnons. The symbols correspond to the simulation data; the
solid line is the result of the numerical integration of the
continuum limit equations (11), (12) using the one-parameter
shooting method with the 4th-order Runge-Kutta scheme. The
dashed line corresponds to equation (31).

Fig. 2. Soliton precession frequency as a function of the num-
ber of bound magnons. Symbols correspond to the simulation
data; the solid line is the result of continuum model integra-
tion; the dashed line corresponds to equation (32).

simple dependence

N ≈ N0

(
R

l0

)2

(31)

is valid. Note that the dependence (31) was verified nu-
merically in reference [19] for the large radius solitons only,
where R > 10l0. Here we want to check the continuum re-
sults for arbitrary R. Using (20) and (31), an approximate
dependence

ωp(N) ≈ ω0

1 +
√

N/N0

(32)

can be derived. To compute the precession frequency, we
calculate the Fourier spectrum of the in-plane spin com-
ponents. One can see from Figure 2 that this simple de-
pendence works well in a wide range of parameters.
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(a) (b)

Fig. 3. In-plane spin distribution for the soliton with R = 5l0,
which is situated at X0 = 26.3 + i25.0. (a) corresponds to the
circular symmetric soliton and (b) to an elliptically deformed
one. The lines describe the contour plot of Sz = 0 (θ = π/2):
the dashed line is for the circular symmetric soliton and the
solid line is for the deformed soliton.

6 Simulation of the orbital motion
of the soliton

In the previous section we have performed spin dynamics
simulations only for the circular symmetric precessional
soliton, which does not move as a whole. As mentioned in
Section 4, in order to move the soliton one should break its
symmetry. We have done this by an initial deformation of
the soliton shape, and integrated numerically the Landau-
Lifshitz equations. Specifically, we have chosen an elliptic
kind of deformation, which corresponds to the shape of
the internal partial mode with azimuthal quantum number
m = −1. We start the simulations with initial conditions

θ = θ0(ρ) + A[u−1(ρ) + v−1(ρ)] cosχ,

φ = ϕ0 + χ − A

sin θ0
[u−1(ρ) − v−1(ρ)] sin χ (33)

by the same numerical scheme as described in the previous
section. We calculated the functions u−1(ρ) and v−1(ρ) nu-
merically solving the eigenvalue problem (25) by the two-
parametric shooting scheme as described in reference [20].
The parameter A is the amplitude of the eigenmode, which
characterizes the magnitude of the soliton deformation.
An initial distribution of spins, which corresponds to equa-
tions (33), is shown in Figure 3 and can be seen to describe
the elliptical kind of the soliton deformation.

During the simulations we have computed the time
dependence of the position X(t) =

(
X(t), Y (t)

)
of the

soliton center:

X(t) =
∑

n rn [S − Sz
n(t)]∑

n S − Sz
n(t)

, (34)

which is the discrete analogue of equation (22); rn =
(xn, yn) are the lattice points.

We have found numerically that after switching off the
damping, the soliton reaches very fast a circular trajec-

Fig. 4. Trajectory of the soliton with initial radius R = 4.87l0
and initial precession frequency ωp = 0.2ω0. The initial point
X0+iY0 corresponds to the center of the soliton from Figure 3.

Fig. 5. Frequency of the orbit motion as a function of the
precession frequency of the soliton. Symbols correspond to the
spin dynamics simulation data; lines corresponds to the fre-
quency of the eigenmode with m = −1 from the continuum
theory by Sheka et al. [20].

tory, see Figure 4. This results in a nice circular motion
with constant frequency. For small deformations the ra-
dius of the orbit is proportional to the initial deforma-
tion. One can say that the effect of a circular motion and
the excitation of the mode with m = −1 are identical
for this case, as predicted by Sheka et al. [20]. Such a re-
lation is valid in some range of the soliton deformation
for all soliton radii, see Figure 5. Then, for larger defor-
mations, non-linear regime is clearly seen, see Figure 6.
The frequency of this orbit motion of the soliton approx-
imately corresponds to the frequency of the local mode,
Ωorb = ωm=−1.

The presence of such an exact circular motion, with
only one frequency, independent of the orbit radius (even
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Fig. 6. Radius of the soliton orbit as a function of the defor-
mation amplitude A. Parameters of the soliton: initial radius
R = 4.87l0 and initial precession frequency ωp = 0.2ω0.

in non-linear regime), gives the possibility to conclude that
this is the first observation in the numerical experiment
of the pure gyroscopic motion, which is equivalent to the
Larmor precession of a charged particle in a magnetic field.
Therefore, the soliton motion can be described by an effec-
tive equation of motion for the position of the soliton X,
which takes the form of usual Newtonian equation for a
particle with the well-defined effective mass M under the
influence of the gyroscopic force F g:

M
d2X

dt2
= F g, F g = G

[
ez × dX

dt

]
. (35)

Here G = 4π�S/a2 is the gyroconstant, see [1]. Formally,
equation (35) has two solutions. One solution, X = const.,
corresponds to the translation mode with m = +1. In the
infinite system this is a zero-frequency local mode, which
describes a simple shift of the soliton, ωm=+1 = 0. The
second solution describes a circular motion with the fre-
quency Ωorb = G/M . Thus, we can calculate the effective
mass of the soliton using the simulation data for the orbit
frequency.

We have checked how the orbit frequency depends on
the soliton radius. For the large radius solitons Ωorb ≈
2ω0(l0/R)3 is in good agreement with the results for the
local modes. For the small radius solitons, the orbit fre-
quency tends to the boundary of the spectrum in the rotat-
ing frame, Ωorb ≈ ω0 − ωp. This dependence corresponds
to our result for the eigenfrequencies, see equation (26) of
reference [20]. In the case N � N0 one can use the ap-
proximate limiting expression (18) for ωp, which results in

Ωorb ≈ ω0 − ω0

[
1 − 1

ln (8N0/eγ2N)

]
=

ω0

ln (8N0/eγ2N)
.

(36)
This frequency tends to zero when R → 0.

One can calculate the effective mass of the soliton by
M = G/Ωorb,

M = M0F

(
N

N0

)
, M0 =

G

ω0
=

π�
2

Ja2δ
, (37)

where M0 is a characteristic value of the effective
mass, found in reference [17]. The function F (•) =
ω0/Ωorb(•) depends on the soliton size having the asymp-
totic behavior

F (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ln
(

8
eγx

)
when x � 1

1
2
x3/2 when x � 1.

(38)

The soliton mass diverges in the limiting cases when
R → 0 and R → ∞. Note that for the large radius soli-
tons the mass increases faster that the domain wall width,
which is proportional to R. The mass takes a minimum
value Mc ≈ 3.51M0 for the soliton with Rc ≈ 0.547l0. The
soliton with these parameters has the highest mobility.

7 Conclusion

In this paper we have studied the dynamics of topological
solitons in classical 2D easy-axis ferromagnet. The analy-
sis was made both analytically in the continuum approx-
imation and numerically using the spin dynamics simula-
tions for a wide range of solitons: from large radius solitons
to small ones. Our simulations were performed for small
anisotropies, which corresponds to the continuum descrip-
tion. We have checked and confirmed a number of results
from the continuum theory about the soliton structure, in
particular, the connection between the number of bound
magnons and the precession frequency of the spins inside
the soliton.

The main issue is connected with the soliton dynamics.
We have proposed a way how to move a soliton exciting
one of its internal modes. To our knowledge, it is the first
observation of inertial motion of 2D magnetic solitons.
The effective soliton dynamics is similar to the Larmor
dynamics of a charged particle in a magnetic field. By
analysis of the effective soliton dynamics we extract in-
formation about the effective mass of the soliton. This
mass essentially depends on the anisotropy, M ∝ 1/δ,
and on the soliton size, having the minimum for the soli-
ton of the radius about 0.5l0. In the case of large radius
solitons the soliton mass increases with the increase of
the soliton radius. Note that it increases faster than the
number of the bound magnons, M ≈ 1

2M0(N/N0)3/2.
Such dependence is in a good agreements with previous
results [17]; the soliton mass diverges in the limit case
R → ∞, which corresponds to the fact that the single
domain wall can not move. When the soliton radius is
smaller, the effective mass increases logarithmically with
its radius, and diverges in the limit case R = 0. Note that
the problem of inertial properties of a small radius soli-
ton have caused a lot of discussions. According to linear
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analysis [17], the soliton mass tends to some limit value
M� = 6

√
π(π + 2)M0 ≈ 55M0 when R → 0. At the same

time our previous analysis of eigenmodes [20] shows that
M → ∞ at the limit case R → 0. Spin dynamics simula-
tions confirms our results on internal modes: the soliton
loose its mobility when becomes very small.

We have predicted the fine circular motion of the soli-
ton by exciting its internal mode. We believe that such
phenomenon can be observed experimentally, e.g. by ac
pumping. Our investigations can be important also for the
quantum Hall systems, where skyrmion-type solitons are
well-known to lead to the breakdown of the spin-polarized
quantum Hall effect [26].
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Appendix A: Calculation of the soliton velocity

In order to check the possible soliton motion we calculate
the speed of the effective soliton position X(t). According
to the equation (22) the soliton speed

dXi

dt
=

S

Na2

∫
d2x xi sin θ∂tθ =

1
�N

∫
d2x xi

δE

δφ
,

where we used the Landau-Lifshitz equation (5). Calculat-
ing the functional derivative for the energy functional (4)
and integrating by parts using the identity

xi∇ · (sin2 θ∇φ
)

= ∇ · (xi sin2 θ∇φ
)− sin2 θ∂iφ,

one can derive the soliton velocity in the form

dX

dt
=

2πl0JS2

�N

∫ ∞

0

ρdρ
〈
sin2 θ∇ρφ

〉
, (A.1)

which is equivalent to equation (23). Here the averaging
means

〈
F (•, χ)

〉 ≡ (1/2π)
∫ 2π

0
F (•, χ)dχ.

Using the partial-wave ansatz (24), one can concretize
the average value in equation (A.1):

〈
sin2 θ∇ρφ

〉
=
∑

m

Am

{
sin2 θ0

[
um − vm

sin θ0

]′ 〈
sin Φmeiχ

〉

+
i

ρ
[(um + vm) sin 2θ0+m(um−vm) sin θ0]

〈
cosΦmeiχ

〉}
.

After averaging with account of the expressions
〈
cosΦmeiχ

〉
=

δ|m|,1
2

eimωmt

〈
sin Φmeiχ

〉
=

imδ|m|,1
2

eimωmt, (A.2)

one can calculate the soliton velocity in the form

dX

dt
=

iω0l0N0

2N

(
A1C1e

iω1t + A−1C−1e
−iω−1t

)
, (A.3)

where the constants Cm are determined by the static soli-
ton structure,

Cm =

∞∫

0

dρ

{
ρm sin2 θ0

[
um − vm

sin θ0

]′
+ (um + vm) sin 2θ0

+ m(um − vm) sin θ0

}
.

Using the equality

ρ sin2 θ0

[
um − vm

sin θ0

]′
= [ρ(um − vm) sin θ0]

′

− (um − vm) sin θ0 − 2ρ(um − vm) cos θ0θ
′
0,

after the integrating the first term by parts, one can
rewrite Cm as follows

Cm = 2

∞∫

0

ρdρ

{
sin θ0

ρ
(um + vm) − mθ′0(um − vm)

}

= −2

∞∫

0

ρdρ cos θ0

{
(1 + m)

(
umu1 − vmv1

)

− (1 − m)
(
umv1 − vmu1

)}
. (A.4)

Here the mode with m = 1 is the zero-frequency local
mode, which describes a shift of the soliton position, its
eigenspectrum has the form [20]

u1 =
θ′0
2

− sin θ0

2ρ
, v1 =

θ′0
2

+
sin θ0

2ρ
, ω1 = 0. (A.5)

A simple calculation shows that C1 = 0, therefore the
soliton motion is connected only with the mode m = −1,
see equation (26).

Let us calculate the dynamics of the “guiding center”
position of the soliton (27). Using the partial-wave expan-
sion (24), one can rewrite the topological density Q (9) as
follows:

Q = − sin θ0 θ′0
l20ρ

− 1
l20ρ

∑

m

Am cosΦm

[
(u′

m + v′m) sin θ0

+ (um + vm) cos θ0θ
′
0 + m(um − vm)θ′0

]
.

Averaging the linear momentum (27) with account
of (A.2) one can derive R(t) in the form

R(t) = l0A1C
�
1 + l0A1C

�
−1 exp (−iω−1t) , (A.6)
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where the constant C�
m can be calculated as follows:

C�
m =

1
4

∫ ∞

0

ρdρ

{
(1 + m)

(
umu1 − vmv1

)

− (1 − m)
(
umv1 − vmu1

)}
.

Using explicit form (A.5) for the zero-frequency mode, one
can easily see that C�

1 = −1, and the contribution of the
mode m = +1 results in the soliton shift. For the mode
with m = −1 one can rewrite the constant C�

−1 in the
form:

C�
−1 =

1
2

∫ ∞

0

ρdρ
(
u−1v1 − v−1u1

)
.

This integral vanishes due to the symmetry of the eigen-
value problem (25). Namely, a simple calculation shows
that

ωm + ω−m

ω0

(
umv−m − vm = u−m

)
=

∇ ·
(
um∇v−m + vm∇u−m − u−m∇vm − v−m∇um

)

for any m. The righthandside is in the form of the total
divergence, thus it gives no contribution to the integral
over the system:

∫ ∞

0

ρdρ (umv−m − vmu−m) = 0.

Therefore the constant C�
−1 = 0, and finally the “guiding

center” of the soliton can be rewriting in the form (28).

Appendix B: Parallelized computations

There exist two main possibilities of parallelization com-
putations: (i) the usage of a vector-computing machine
which has a shared memory or (ii) the usage of a cluster
system (usually a Linux cluster) with communication be-
tween the different processors (nodes). The latter process
is called message passing interface (MPI), this interface
does not depend on the programming language.

In MPI there is a master-process which is responsi-
ble for the administration of the data, i.e. initializations,
reading or saving of data, whereas the other nodes (slaves)
are doing the calculation (e.g. integration). In our case we
divide the lattice into horizontal stripes. As in our system
we take into account nearest-neighbor interaction we must
put a communication between the borders of the stripes.
To make calculations for the ith stripe we need the lower
border of the (i + 1)th stripe and the upper boarder of
the (i − 1)th stripe. This exchange is done after every
second integration step in the Runge Kutta algorithm.
This advantages a good equilibrium between the latency
period (time in which the nodes are synchronized), data-
transferring time, and calculation time. As the boundary
condition of our lattice is periodic the upper boarder of

the top stripe is exchanged with the lower border of the
bottom stripe. Concerning the left and right boarders of
one stripe there are no communication processes, because
horizontal cuts of the system advantage an internal ex-
change of the lateral borders in one process.

As the data is always transferred between the same
nodes we implement a persistant connection mode in or-
der to make the overhead (additional time spent on the
connection establishment) smaller. Theses connections are
built up at the beginning of the integration to be ready
for a fast use.

The transfer takes place in an asynchronous, buffered
mode. Thereby the data resulting of the calculation on a
stripe is put into a buffer so that for this node there is no
need to wait until the other nodes are ready to receive. In
order to do a new calculation in the next time steps the
stripe awaits information of its neighbored stripes. The
advantage of this method is that the time exposure for
the synchronization of the nodes decreases.

After integrating 40 time steps with ∆t = 0.01 we cal-
culate the soliton position X(t) discretely and optimally
distributed over the other nodes. After finishing the cal-
culations the data is sent from the slaves to the master-
process which saves the data in a file.

The parallelizing of the source code is much easier
and more effective if one can use shared memory multi-
processors machines. The loops are environed by sunstyle
parallelization-directives. According to the dependency of
the variables they have to be declared as private variables
and others as reduction variables. Private variables take
different values in different threads (such as auxiliary vari-
ables) so there is no shared memory for these variables. Re-
duction variables are used for sums which are distributed
over different threads during one loop and are added in the
end of the parallelized loop. The advantage of this method
is a very fast access to the shared memory of all threads.
This avoids a time consuming latency period caused by a
communication process. To summarize we want to stress
that a shared memory machine is always much faster than
a cluster, if one considers a fixed number of processors to
be in use. The only advantage a cluster has is the fact that
compared to a shared memory machine it has much more
processors and the number of processors can be increased
arbitrarily. Also aspects of the price motivate universities
and institutes to buy a cluster instead of a shared memory
machine.
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